102. The Stereochemistry of β-Diketo-complexes with Trimethylplatinum(Iv). Part IV.* The Crystal Structure of μ-Ethylenediaminebis[trimethyl(acetylacetonato)platinum(Iv)].

By Alan Robson and Mary R. Truter.

Abstract

A partial three-dimensional crystal structure analysis of the complex named in the title has unequivocally established its stereochemistry. There are four molecules of the binuclear complex in a monoclinic unit cell having $a=23 \cdot 19, b=6.46, c=16.42 \AA, \beta=103^{\circ}$ and space group $12 / a$. Each molecule is arranged so that the centre of the carbon-carbon bond in the ethylenediamine group lies on a centre of symmetry in the crystal, and the two nitrogen atoms are co-ordinated to different platinum atoms so that the ethylenediamine group forms a bridge between the two halves of the binuclear complex. Each platinum atom is octahedrally co-ordinated by one nitrogen atom, by the two oxygen atoms of a chelate acetylacetone and three methyl groups in the usual cis configuration for a trimethylplatinum derivative. The acetylacetone group is planar and there are no other atoms close to the γ-carbon atom; in particular, there is no bond between this atom and platinum.

When a solution of trimethyl(acetylacetonato)platinum dimer $\left(\mathrm{Me}_{3} \mathrm{Pt} \text { acac }\right)_{2}(\mathrm{I})$ is treated with a solution of bipyridyl the yellow complex which results is trimethyl(diacetylmethyl)bipyridylplatinum, Me_{3} acac bipy Pt (II). Although the crystal structure of (I) itself has

(III)
not been determined, the information available ${ }^{1}$ strongly suggests that the dimeric molecule is structurally analogous to the dimeric trimethylplatinum complexes of 4,6-dioxononane ${ }^{1}$

* Part III, Swallow and Truter, Proc. Roy. Soc., 1962, A, 266, 527.
${ }^{1}$ Swallow and Truter, Proc. Roy. Soc., 1960, A, 254, 205.
and ethyl acetoacetate ${ }^{2}$ which contain a tridentate β-dicarbonyl compound. Determination of the crystal structure of (II) revealed ${ }^{3}$ that the acetylacetone acts as a monodentate ligand.

In a study of the reactions between nitrogen-containing ligands and dimeric trimethyl(β-diketo) platinum compounds, ${ }^{4}$ one of the products was $\left(\mathrm{Me}_{3} \mathrm{acac} \mathrm{Pt}\right)_{2}$ en (en $=$ ethylenediamine). The infrared spectral data for this compound suggested that it contained a chelate acetylacetone ligand. Although it seems to be analogous to the known ${ }^{5}$ cation in $\left[\left(\mathrm{Me}_{3} \mathrm{en} \mathrm{Pt}\right)_{2} \mathrm{en}\right]^{2+} 2 \mathrm{I}^{-}$, (III), it could not be prepared from the latter by standard methods. An account of the preparation and properties of these compounds will be given separately. ${ }^{4}$ We undertook a crystal structure analysis of $\left(\mathrm{Me}_{3} \mathrm{acac} \mathrm{Pt}\right)_{2}$ en to establish its stereochemistry; for this purpose three-dimensional data about one axis sufficed.

Methods and Results

Crystal Data.- $\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pt}_{2}, M=738 \cdot 7$, m. p. 196-198 ${ }^{\circ}$ (decomp.). Monoclinic, $a=23.19 \pm 0.03, b=6.46 \pm 0.01, c=16 \cdot 42 \pm 0.02 \AA, \beta=103.0 \pm 0.3^{\circ} . \quad U=2397 \AA^{3}$, $D_{m}=2.05$ (by flotation), $\bar{Z}=4, D_{c}=2.05, F(000)=1400$. Space group I2/a $\left(C_{2 h}{ }^{6}\right.$,

Fic. 1. The numbering of the atoms in the asymmetric unit.

No. 15) determined by structure analysis. Cu- K_{α} radiation single-crystal oscillation and Weissenberg photographs, absorption coefficient, $\mu=221 \mathrm{~cm} .^{-1}$, no absorption correction applied.

Tro-dimensional Structure Determination.-The systematic absences were consistent with two space groups, $I a$ and $I 2 / a$ (this orientation has been chosen because the unit cell for $C 2 / c$, has an inconvenient β angle, 150°). The calculated molecular weight with four molecules per unit cell was 740, in agreement with the formula obtained by chemical analysis; if the space group were $I a$, no molecular symmetry would be required, but in $I 2 / a$ the one ethylenediamine group in the molecule must be situated with the centre of the carbon-carbon bond either on a centre of symmetry or on a 2 -fold axis and the two platinum atoms would be related by this symmetry element.

We first located the platinum atoms by Patterson projections down [010] and [100]. In the [010] projection there was one large peak, identified as a $\mathrm{Pt}-\mathrm{Pt}$ vector; this gave the x and z co-ordinates. The [100] projection was diagnostic for the space group; there were three large peaks of which one was on the line $v=0$ at $w=2 z$ indicating that there were platinum atoms related by a 2 -fold axis, the other two peaks were at $2 y, 0$ and $2 y, 2 z$. From the two projections a consistent set of fractional co-ordinates was obtained for platinum, $x / a=0 \cdot 10, y / b=0 \cdot 88, z / c=-0.075$. Refinement by least squares gave $R_{(h 0 l)}=0.211$ and $R_{(0 k l)}=0.169$ for platinum only.

We had to locate one carbon atom, $\mathrm{C}(\mathbf{1})$ and one nitrogen atom, N , of the ethylenediamine, three methyl groups $\mathrm{C}(2), \mathrm{C}(3)$, and $\mathrm{C}(4)$ and the five carbon and two oxygen atoms

[^0]of acetylacetone; hydrogen atoms were ignored. The numbering of the atoms is shown in Fig. 1.

Three-dimensional Structure Determination.-Attempts to locate the light atoms in projection were unsuccessful so the three-dimensional observations were used for subsequent work. Refinement of the co-ordinates of the platinum brought $R_{(h k l)}$ to 0.217 ; the thermal motion of the platinum was assumed to be isotropic and the scale factor for each layer line about the b axis was adjusted to make $\Sigma\left|F_{\mathrm{o}}\right|=\Sigma\left|F_{\mathrm{c}}\right|$ for that layer line. A difference Fourier synthesis was then computed to give a map of the electron density from which the platinum contribution had been removed. An octahedral arrangement of atoms about platinum could be distinguished; the two with the highest electron density were adjacent and were taken to be the oxygen atoms.

At first we assumed that the centre of the ethylenediamine group lay on a 2 -fold axis, as in the $\left[\left(\mathrm{Me}_{3} \mathrm{en} \mathrm{Pt}\right)_{2} \mathrm{en}\right]^{2+}$ cation, so we also identified a small peak near this axis as $\mathrm{C}(\mathrm{l})$ and its neighbour in the octahedron as N ; the three carbon atoms of the methyl groups were then in the cis-configuration, as found in all other trimethylplatinum derivatives. Two cycles of refinement with the platinum atom, and seven light atoms reduced R to $0 \cdot 194$. Study of the temperature factors showed that one oxygen with a high value of U (the mean square amplitude of vibration), $0.07 \AA^{2}$, should be interchanged with a carbon atom for which the value of U was apparently negative; the $c i s$-configuration was preserved.

Fig. 2. Projection of the structure along [010]. The molecules shown by full lines lie on the centres of symmetry at $\left(0, \frac{1}{2}, 0\right)$ and $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ molecules shown by broken lines lie on the centres of symmetry at $\left(0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.
With the new allocation of oxygen atoms it was possible to find the remaining atoms of the acetylacetone group in the difference map; these were added and the R value for the platinum and all the light atoms was $\mathbf{0} \mathbf{1 8 2}$. However, the temperature factor for $\mathrm{C}(\mathbf{1})$ was large, $0.19 \AA^{2}$, and increased in every cycle indicating that this atom had been misplaced, further the value of U for nitrogen was $0.08 \AA^{2}$ while that for C(3) was $0.04 \AA^{2}$. Interchange of N and $\mathrm{C}(3)$ would preserve the cis-configuration and require $\mathrm{C}(1)$ to be near the centre of symmetry at $0, \frac{1}{2}, 0$. A suitable peak was visible on the difference map so $\mathrm{C}(1)$ was put in at the new position, N and $\mathrm{C}(3)$ were interchanged and a new set of structure factors was calculated; R fell to $0 \cdot 138$ and no atoms showed abnormalities of temperature factor. The structure is shown in projection in Fig. 2.

Four cycles of refinement, all the atoms being assumed to vibrate isotropically, reduced R to 0.09 and gave no more shifts in parameters as large as their corresponding standard deviations. As a final check on the correctness of the structure, a three-dimensional

Table 1.

Final atomic parameters.										A	
	x / a	y / b	2/c	X^{\prime}	Y	Z	$\sigma(X)$	$\sigma(Y)$	$\sigma(Z)$	$\widetilde{U}_{\text {iso }}$	$\sigma(V)$
Pt......	$0 \cdot 0969$	$0 \cdot 0916$	-0.0745	$2 \cdot 522$	$0 \cdot 592$	$-1 \cdot 193$	$0 \cdot 003$	$0 \cdot 004$	$0 \cdot 003$	$0 \cdot 0303$	$0 \cdot 0006$
$\mathrm{O}(1) \ldots$	$0 \cdot 158$	$0 \cdot 310$	-0.001	$3 \cdot 67$	$2 \cdot 00$	-0.02	$0 \cdot 04$	0.04	$0 \cdot 04$	$0 \cdot 05$	0.01
$\mathrm{O}(2) \ldots$	$0 \cdot 093$	-0.047	$0 \cdot 045$	1.99	-0.31	0.73	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 03$	0.01
N	$0 \cdot 017$	0.295	-0.064	$0 \cdot 63$	$1 \cdot 90$	-1.02	0.05	$0 \cdot 06$	0.05	$0 \cdot 05$	0.02
C(1) ...	$0 \cdot 032$	$0 \cdot 431$	0.002	$0 \cdot 73$	$2 \cdot 79$	$0 \cdot 03$	0.07	0.08	$0 \cdot 08$	0.07	0.02
C(2) ...	$0 \cdot 107$	$0 \cdot 260$	-0.185	$3 \cdot 16$	$1 \cdot 68$	-2.96	0.07	$0 \cdot 10$	0.07	0.07	0.02
C(3) ...	$0 \cdot 167$	-0.083	-0.090	$4 \cdot 20$	-0.54	-1.44	$0 \cdot 06$	0.09	0.07	0.05	$0 \cdot 02$
C(4)	$0 \cdot 036$	-0.094	-0.159	$1 \cdot 42$	-0.61	$-2 \cdot 54$	$0 \cdot 06$	0.08	$0 \cdot 06$	0.05	0.02
C(5)	$0 \cdot 136$	-0.025	$0 \cdot 114$	$2 \cdot 74$	-0.16	$1 \cdot 82$	$0 \cdot 06$	0.07	$0 \cdot 06$	0.04	0.02
C (6)	0.173	$0 \cdot 103$	$0 \cdot 128$	$3 \cdot 54$	$0 \cdot 67$	2.05	0.05	0.08	0.06	0.04	0.02
C(7) ...	$0 \cdot 184$	$0 \cdot 297$	$0 \cdot 077$	$3 \cdot 98$	1.92	$1 \cdot 23$	0.06	$0 \cdot 08$	0.07	$0 \cdot 05$	0.02
C(8) \ldots	$0 \cdot 232$	0.434	$0 \cdot 103$	$5 \cdot 00$	$2 \cdot 80$	$1 \cdot 66$	0.07	$0 \cdot 09$	$0 \cdot 07$	$0 \cdot 06$	0.02
C(9) ...	$0 \cdot 123$	-0.163	$0 \cdot 185$	$2 \cdot 16$	-1.05	$2 \cdot 97$	0.07	$0 \cdot 09$	$0 \cdot 08$	$0 \cdot 07$	0.03

Fig. 3. Diagram of one molecule showing the bond lengths, in \AA, with their standard deviations in parentheses, and most of the bond angles. The standard deviations in the bond angles are 6° for $\angle \mathrm{C}-\mathrm{C}-\mathrm{C}$, $\angle \mathrm{O}-\mathrm{C}-\mathrm{C}$, and $\angle \mathrm{N}-\mathrm{C}(1)-\mathrm{C}$ and 4° for $\angle \mathrm{C}-\mathrm{O}-\mathrm{Pt}$, and $\angle \mathrm{C}(1)-\mathrm{N}-\mathrm{Pt}$. All the bond angles round the platinum atom and their standard deviations are given in Table 3.
For clarity only some atoms have been designated, the designations of the others can be deduced by comparison with Fig. 1.

difference Fourier synthesis was computed; the resulting electron density map did not show any significant peaks or troughs.

Results.-The final atomic parameters are shown in Table 1 as fractional co-ordinates, and as co-ordinates (X^{\prime}, Y, and Z^{\prime}) in \AA with respect to orthogonal axes parallel to the crystallographic a, b, and c^{*} axis, respectively. The standard deviations in \AA with respect to the crystallographic axes, and the mean square amplitudes of vibration, $U_{\text {iso }}$ and their standard deviations are also included.

Observed and calculated structure factors are given in Table 2. The bond lengths, their standard deviations and most of the bond angles are displayed in Fig. 3; the bond angles round the platinum atom and their standard deviations are shown in Table 3.

The plane through the 7 atoms of the acetylacetone group was calculated, its equation

Table 2.

Table 2. (Continued.)

1	10	I°
7	215	-226
7	I 99	-192
7	178	194
8	99	- II7
8	170	137
9	148	-125
9	204	182
9	214	219
9	174	-196
9	127	- 34
9	149	160
10	138	- 133
17	206	- 194
II	150	169
II	154	183
II	153	-192
13	156	-177
13	153	192
-1	235	-271
$-\mathrm{I}$	230	-247
-I	217	197
-1	382	423
-I	92	I I4
-2	233	-230
-1	224	-226
-1	214	211
-2	176	-185
-2	132	-131
-2	127	137
-2	168	I 80
-2	134	-II4
-3	304	$-3,8$
-3	357	389
-3	280	301
-3	244	-253
-3	288	-332
-3	229	248
-3	I 50	I65
-4	II8	-II9
-4	109	90
-4	I 46	I26
-4	93	66
-4	144	-138
-5	730	-90
-5	358	383
-5	305	28 I
-5	81	-72
-5	346	-301
-5	157	-130
-5	218	223
-5	233	248
-5	178	-196
-6	211	107

I
$F_{n} \quad F_{C}$
h
$h k$
1
3
4
4
4
4
75 -

4	k	l	Fo	F_{c}
13	3	-4	127	132
15	3	-4	272	261
19	3	-4	142	-140
2 I	3	-4	135	-157
-	3	-5	110	-76
12	3	-5	103	83
1	3	-6	103	80
3	3	-6	354	960
5	3	-6	168	14^{8}
7	3	-6	247	-23I
9	3	-6	317	-254
13	3	-6	242	288
15	3	-6	196	${ }^{6} \mathrm{x}$
17	3	-6	114	-136
19	3	-6	163	-187
4	3	7	111	-57
I	3.	-8	253	252
3	3	-8	213	192
5	3	-8	182	-151
7	3	-8	297	-283
9	3	-8	103	-58
11	3	-8	242	187
13	3	-8	158	130
17	3	-8	183	- 197
1	3	-10	229	201
3	3	-10	107	-82
5	3	-10	312	-285
7	3	-10	133	-118
9	3	-10	175	14^{6}
1	3	-10	242	203
15	3	-10	247	-195
17	3	-10	113	-101
19	3	-10	133	92
3	3	12	269	-326
5	3	-12	200	-175
7	3	-12	140	184
9	3	-12	232	220
13	3	-12	164	-145
15	3	-r2	179	-165
19	3	-12	158	163
1	:	-14	163	-131
3	3	-14	200	-172
7	3	-14	200	184
18	3	-14	160	-121
13	3	-14	173	-153
17	3	-14	136	123
19	3	-14	105	92
I	3	-16	157	$-{ }^{18}$
5	3	-16	127	126
7	3	-16	130	98
11	3	-16	145	-132

Table 3.
Bond angles round the platinum atom and their standard deviations.

$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(2)$	$85^{\circ} \pm 1^{\circ}$	$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{N}$	88°		$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{C}(3)$	89°		
$\mathrm{C}(4)-\mathrm{Pt}-\mathrm{C}(2)$	85°	$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{C}(3)$	95		$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{C}(2)$	88		
$\mathrm{C}(3)-\mathrm{Pt}-\mathrm{C}(2)$	$86\} \pm 3^{\circ}$	$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{C}(4)$	101		$\mathrm{C}(4)-\mathrm{Pt}-\mathrm{N}$	87		
$\mathrm{N}-\mathrm{Pt}-\mathrm{C}(2) \ldots$.	91	$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{N}$	92		$\mathrm{C}(4)-\mathrm{Pt}-\mathrm{C}(3)$	92		

is: $0.728 X^{\prime}-0.617 Y-0.299 Z^{\prime}-1.448=0$. The largest deviation from this plane is $0.12 \AA$ for $\mathrm{C}(6)$. In the other trimethylplatinum- β-diketo-complexes we have studied, the β-diketone ring is non-planar in a systematic way; we tested for the same kind of deviation from planarity by calculating the planes through $\mathrm{O}(2), \mathrm{C}(5), \mathrm{C}(6)$, and $\mathrm{C}(9)$ and through $\mathrm{O}(1), \mathrm{C}(7), \mathrm{C}(6)$, and $\mathrm{C}(8)$ and determining the angle between their normals. It was $9 \pm 6^{\circ}$, not significantly different from zero, as required for a completely planar group. and in contrast to the value 27° found in the other trimethylplatinum complexes.

The platinum atom is $0.39 \AA$ out of the plane of the acetylacetone, in harmony with the observation for other β-diketo-complexes, e.g., in $\left[(\mathrm{acac})_{2} 2 \mathrm{H}_{2} \mathrm{OCo}\right]^{6}$, so that the plane
through $\mathrm{C}(2), \mathrm{C}(4), \mathrm{O}(2), \mathrm{O}(1)$, and Pt for which the equation is: $0.790 X^{\prime}-0.607 Y-$ $0.076 Z^{\prime}-1.727=0$, is not parallel to that of the acetylacetone but the planes are " hinged " about the $\mathrm{O}(1)-\mathrm{O}(2)$ line, the angle between their normals being $13 \pm 4^{\circ}$.

All the intermolecular distances of less than $3 \cdot 9 \AA$ were calculated, only 7 were found, of these the shortest was $3 \cdot 44 \AA$ between two methyl groups, $C(9)$ and $C(2)^{\prime \prime}$ in the molecule related to the original asymmetric unit by a c glide at $y / b=\frac{1}{4}$. The absence of improbably short van der Waals separations is another indication that the structure is correct. In contrast to the other trimethylplatinum- β-diketo-complexes studied in this laboratory there are no short contacts to the "active" γ-carbon atom, $\mathrm{C}(6)$. The intramolecular platinum-platinum separation is $7.68 \pm 0.007 \AA$, compared with $7.8 \pm 0 \cdot 1 \AA$ in the $\left[\left(\mathrm{Me}_{3} \mathrm{en} \mathrm{Pt}\right)_{2} \mathrm{en}\right]^{2+}$ cation. ${ }^{5}$

Discussion

In a platinum compound the value of the agreement index is insufficient criterion for the correctness of the location of the light atoms and we have accordingly taken care to apply other tests. A final electron-density map was featureless indicating that there were no additional atoms unlocated. Throughout the analysis the temperature factors of the individual atoms had been used to check the plausibility of their location, and they proved sensitive not merely to the incorrect location of one atom but even to the distinction between oxygen, carbon and nitrogen atoms.

This analysis has shown unequivocally that the product of the reaction between the trimethyl(acetylacetonato)platinum(Iv) dimer and ethylenediamine is a centrosymmetrical binuclear complex, in which the ethylenediamine group forms a bridge between the two platinum atoms. Each platinum atom is octahedrally co-ordinated, to one nitrogen atom, to the two oxygen atoms of the acetylacetone group and to three carbon atoms in methyl groups. The methyl groups are, as usual in trimethylplatinum compounds, in the cisconfiguration. This is the first complex of trimethylplatinum in which a β-diketone has been shown to have the chelate form, normal in complexes with other metals; the planarity of this group and its geometrical relation to the remaining atoms of the octahedron round the metal atom are just the same as in comparable complexes with other metals. ${ }^{6}$

The bond lengths we have found (see Fig. 3), within the limits of their necessarily large standard deviations, agree with those from comparable compounds; $\mathrm{Pt}-\mathrm{C}=2.05 \pm 0.02 \AA$ and $\mathrm{Pt}-\mathrm{N}=2.15 \pm 0.01 \AA$ in $\mathrm{Me}_{3}|\mathrm{acac}|$ bipyridyl $\mathrm{Pt}^{3}{ }^{3} \mathrm{Pt}-\mathrm{O}=2.15 \pm 0.02 \AA$ in $\left[\mathrm{Me}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{CO}\right)_{2} \mathrm{CH} \mathrm{Pt}\right]_{2},{ }^{1}$ and similarly the light atom-light atom distances are not significantly different from the usual values. They are all reasonable enough to confirm the correctness of the structure but not accurate enough to permit a detailed discussion of the nature of the bonding. Only two of the bond angles round platinum (Table 3) differ from 90° by amounts which are significant statistically, $\mathrm{O}(\mathrm{l})-\mathrm{Pt}-\mathrm{O}(2)$ is smaller ($\Delta / \sigma=3 \cdot 0$) and $\mathrm{O}(2)-\mathrm{Pt}-\mathrm{C}(4)$ is larger $(\Delta / \sigma=5 \cdot 7)$. There does not appear to be any chemical significance in these values, the environment of $O(2)$ is similar to that of $O(1)$ in other respects.

If the acac group and the en group are regarded just as chelate groups, the stereochemistry of $\left(\mathrm{Me}_{3} \mathrm{acac} \mathrm{Pt}\right)_{2} \mathrm{en}$ can be compared with that of $\left.\left[\mathrm{Me}_{3} \mathrm{en} \mathrm{Pt}\right)_{2} \mathrm{en}\right]^{2+}$. Both approximate to $2 / m$ symmetry so that the crystallographic requirement of a centre of symmetry in one case and a two-fold axis in the other does not represent a fundamental difference. There is, however, a difference in the orientation of the two halves of the molecule; this only requires rotation about the platinum-nitrogen bonds and probably depends on the packing in the crystal (compare III with Fig. 3).

Experimental

The preparation of the compound is described by Kite and Truter. ${ }^{4}$ All X-ray photographs were taken with $\mathrm{Cu}-K_{\alpha}$ radiation. Unit cell dimensions were measured from Weissenberg
${ }^{6}$ Bullen, Acta Cryst., 1959, 12, 703.
photographs. Equi-inclination Weissenberg photographs were taken about the b axis of a crystal 0.3 mm . long and $0.02 \times 0.01 \mathrm{~mm}$. in cross-section for the zero to the third layer inclusive; the zero layer about the a axis was also measured. A multiple-film technique was used and the intensities of the spots were estimated visually with the aid of a calibration strip. For the non-zero layers the Phillips spot-shape correction factor ${ }^{7}$ was applied; this and the application of Lorentz and polarisation factors were carried out on the Leeds University Ferranti Pegasus computer with a programme written by Mr. J. G. F. Smith. No absorption correction was applied. The scale factor for $F(h 0 l)$ was obtained by Wilson's method ${ }^{8}$ in the first instance, then for both the $F(h 0 l)$ and $F(0 k l)$ the scale was found from plots of $\log \left(F_{\mathrm{c}} / F_{\mathrm{o}}\right)$ against $\sin ^{2} \theta$ which also gave the value of $B=2 \cdot 3 \AA^{2}$ (equivalent to $U=0.0285 \AA^{2}$). The other layers about the b axis were scaled approximately by comparison with the common reflections on the (0 kl) layer but there were so few suitable reflections that these scale factors had to be treated as parameters until all the atoms had been located and they were altered to make $\Sigma\left|F_{0}\right|=\Sigma\left|F_{\mathrm{e}}\right|$ for each layer line.

The scattering factors were those of Thomas and Umeda ${ }^{9}$ for platinum, corrected for the real part of the anomalous dispersion, ${ }^{10}$ and of Berghuis et al. ${ }^{11}$ for carbon, nitrogen, and oxygen. Refinement was carried out by the method of least squares on the Pegasus computer with programmes written by Cruickshank et al.; ${ }^{12}$ the function minimised was $R^{\prime}=\Sigma w\left(\left|F_{\mathrm{o}}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right),{ }^{2}$ where w was taken as $1 /\left|F_{\mathrm{o}}\right|$. Three-dimensional Fourier syntheses and calculations of interatomic distances and angles were carried out on the computer with programmes which have been described; ${ }^{12}$ the estimated standard deviations in the dimensions of the molecule were computed with a programme written by Mr. J. G. F. Smith.

We thank Mr. J. G. F. Smith and other colleagues ${ }^{12}$ for the use of their programmes, and the Director and staff of the Leeds University Computing Laboratory for computing facilities. One of us (A. R.) is grateful to the D.S.I.R. for a Studentship. Some of the equipment was provided by the Royal Society and by Imperial Chemical Industries Limited.

[^1]
[^0]: ${ }^{2}$ Hazell and Truter, Proc. Roy. Soc., 1960, A, 254, 218.
 ${ }^{3}$ Swallow and Truter, Proc. Roy. Soc., 1962, A, 266, 527.
 ${ }^{4}$ Kite and Truter, Part V, in the press.
 5 Truter and Cox, J., 1956, 948.

[^1]: Department of Inorganic and Structural Chemistry, The University, Leeds 2.
 [Received, February 6th, 1964.]
 7 Phillips, Acta Cryst., 1954, 7, 746.
 ${ }^{8}$ Wilson, Nature, 1942, 150, 152.
 9 Thomas and Umeda J. Chem. Phys., 1957, 26, 293.
 ${ }^{10}$ Dauben and Templeton, Acta Cryst., 1955, 8, 841.
 ${ }_{11}$ Berghuis, Haanappel, Potter, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ${ }^{12}$ Cruickshank, Pilling, Bujosa, Lovell, and Truter, "Computing Methods and the Phase Problem in X-ray Crystal Analysis,', Pergamon Press, London, 1961, p. 32.

